
Information Visualization for Agile Software
Development Teams

Julia Paredes
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada

Email: jparedes@ucalgary.ca

Craig Anslow
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada

Email: craig.anslow@ucalgary.ca

Frank Maurer
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada

Email: frank.maurer@ucalgary.ca

Abstract—Understanding information about software artifacts
is key to successful Agile software development projects; however,
sharing information about artifacts is difficult to achieve amongst
team members. There are many information visualization tech-
niques used to help address the difficulties of knowledge sharing,
but it is not clear what is the most effective technique. This
paper presents the results of a systematic mapping study of
existing literature on information visualization techniques used by
Agile software development teams. The results of the systematic
mapping show that Agile teams use visualization techniques for
designing, developing, communicating, and tracking progress.
Our findings show that visualization techniques help Agile teams
increase knowledge sharing and raise awareness about software
artifacts amongst team members.

Keywords—Agile software development, information visualiza-
tion, software visualization, information radiator, big visible charts,
knowledge sharing, systematic mapping

I. INTRODUCTION

Information visualization is the use of visual representa-
tions of abstract data to amplify cognition [5]. Effective visual-
izations help observers to quickly identify relevant information,
and help people to understand the relationships of what they
are seeing [17].

Software visualization is considered part of information
visualization [7]. Software visualization is used to make the
structure, behaviour and evolution of software, such as code
organization, software state, and bugs, more understandable
[7]. Software visualization is highly relevant for developers
who seek to improve software quality and has been used by
developers to raise awareness about software artifacts [61].

Agile software development is an iterative alternative ap-
proach to traditional sequential management such as waterfall
methods [6]. Agile methodologies are concerned with iter-
atively delivering high quality software based on feedback
gathered from customer collaboration [6]. In Agile teams, the
changing nature of Agile projects demands that they are aware
of changing requirements, the user stories that they need to
complete and the work of other teammates [6][39]. Since
projects are progressively implemented in small iterations,
Agile teams need to have all the information required to
effectively respond to changes. It is a challenging task to make
everyone in the team aware of the big picture of the project
and the goals that need to be met in a particular timeframe.

For this reason, Agile teams have used different visual-
izations techniques to understand the scope of the project
and keep track of the work that is being done. Agile teams
devote substantial time to build informative workspaces [33].
Informative workspaces are workspaces that encourage com-
munication and aid knowledge sharing by broadcasting infor-
mation to team members [16]. Informative workspaces display
information about the work in progress, work completed and
the goals for the future [6]. These workspaces need to convey
all the relevant information for the team. However, there isn’t
a single way of building and sharing information in Agile
teams. The difficulties in knowledge sharing vary depending on
different aspects of the project such as team size, distribution
of the teams, and the nature of the project. Picking the right
visualization technique to share information is important to
deliver relevant information to team members.

The goal of this paper is to explore and summarize
information visualization techniques used during the design
and development steps of the software cycle, as well as to
highlight the importance of building informative workspaces
for effective knowledge sharing and communication between
Agile teams. This paper presents the results of a systematic
mapping of existing literature on information visualization
techniques used by Agile teams during the development cycle.

II. RELATED WORK

Jimenez et al. [8] conducted a literature review on the
challenges of distributed Agile software development and
identified group awareness as one of the major challenges
faced by Agile distributed teams. They synthesize different
visualization techniques used during the development cycle to
communicate to managers which developers are involved on
certain tasks, as well as to allow developers to know when
code changes and who is responsible for the changes. There
is no mention on how distributed teams can benefit on having
informative workspaces.

Ahmad et al. [1] conducted a literature review and discuss
how Kanban methodologies are used to visualize bottlenecks in
the workflow and work in progress. They found that visualizing
work and limiting work in progress helps in task management
and improves communication amongst team members.

Manzoor and Shahzad [12] conducted a systematic review
and an industry survey on information visualization for Agile
organizations. The challenges of large organizations that use



Agile or Lean practices were identified and information visu-
alization techniques that help overcome these challenges were
found. Using a systematic review, information visualization
techniques in Agile were classified into six different categories
based on purpose: progress tracking and work state, business
modelling, data modelling, requirement analysis and trace-
ability, software configuration management, and coordination
among teams and project stakeholders. An industry survey,
which involved 50 Agile software developers, was conducted
to identify the visualizations used in industry. Manzoor and
Shahzad [12] proposed visualization techniques to solve exist-
ing challenges, but the techniques were not tested in industry
and there was not a clear understanding on how Agile teams
incorporate these techniques in their workspace.

Storey et al. [61] conducted a survey on software visual-
ization tools to support awareness of developers in software
teams. They found that repositories, bug tracking systems,
and the code are used to create visualizations to explore
artifacts in software development. They claim the main issue
with current software visualization tools is that there aren’t
empirical studies to identify required features to raise aware-
ness, and there is little research on how to evaluate software
visualization tools. Through a systematic mapping on software
evolution visualizations, Novais et. al [11] reached similar
conclusions. They found that software visualization tools are
rarely evaluated with a goal in mind and in a real setting.

To understand the importance and the perspective of re-
searchers on software visualization, Koschke [10] conducted
a survey, which involved 82 researchers, on software visual-
ization in software maintenance, reverse engineering, and re-
engineering. The value of visualizations during development
and maintenance is that visualizations suggest areas of ex-
ploration when developers may not be aware of issues. This
is especially important for code understanding. To visualize
artifacts such as code, dependencies, complexity and classes,
researchers frequently make use of graphs and automatically
generated UML diagrams.

III. METHODOLOGY

Systematic maps allow reviewing and classifying existing
research about a field of interest [15]. We are unaware of
any systematic mappings related to information visualization
for Agile software development. The study in this paper
was conducted following the guidelines outlined by Petersen
et al. [15] for conducting systematic mappings in software
engineering. This section contains details on the process we
followed for each step of the systematic mapping.

A. Research Questions

The goal of this systematic mapping is to explore how
information visualization is used for software development
in Agile teams based on existing literature. The research
questions that guided this systematic mapping are:

Q1: What information visualization techniques are used in
Agile software development?

Q2: What information visualization techniques raise aware-
ness of artifacts in Agile software development teams?

Q3: What information visualization techniques raise aware-
ness of artifacts in software development teams?

The first two research questions focus on information visu-
alization techniques in Agile software development teams. The
third question explores information or software visualization
tools that have proved to help raise awareness of artifacts in
software teams. Exploration of these tools would allow us to
discuss if Agile teams are missing important tools that could
help them to satisfy their information needs about a project.

B. Conduct Search

After defining the research questions, a search for pub-
lications relevant to the proposed research questions was
conducted. The sources selected for the search were IEEE,
ACM Digital Library, Elsevier, Google Scholar, and Microsoft
Academic Search. In addition, a manual search was conducted
on leading Agile, software engineering, software visualization,
information visualizations, and HCI conferences. The papers
included in this systematic mapping come from a variety
of Agile, information visualization, and software engineering
publications such as: Agile, XP, CHI, ITS, VISSOFT, SoftVis,
InfoVis, and ICSE.

The query for the systematic mapping was created by com-
bining keywords from Agile methodologies and information
visualization techniques and tools. Some of the keywords for
visualizations were chosen after reading several blogs, such as
Xprogramming1 and SoftVis2, by Agile developers making use
of that terminology to refer to visualizations in Agile. Table I
presents the keywords used to build the search queries.

TABLE I: Agile and Information Visualization Keywords

Category Keywords
InfoVis Information Visualization, Software

Visualization, Information Radiator, Big
Visible Chart, Burn down chart, Sketch,
Prototype, Visualization Technique,
Visualization Tool, Graph, Table, Matrix,
Tree

Agile Agile, Lean Software Development, Scrum,
Extreme Programming, Continuous
Integration, Agile Project, Agile
Development

C. Screening papers

A total of 162 papers were collected from the selected
sources based on the search terms. The next step was to discard
papers that were irrelevant to the research questions. After
the initial screening of the papers, an inclusion and exclusion
criteria was set. To include a publication in the analysis, the
study must have been in English, available online, and must
have been relevant to the questions identified. For most papers,
the title was sufficient to know if the paper related somehow
to the research questions. However, if the title was unclear,
a view of the abstract and the conclusion determined if the
paper should be included. Papers were excluded if they didn’t
meet the inclusion criteria or if they were tutorials or demos.

1http://xprogramming.com
2http://softvis.wordpress.com/



Papers were also excluded if the word ‘Agile’ didn’t refer to
the Agile software methodology. After applying the inclusion
and exclusion criteria, a total of 50 papers were reviewed as
part of the data extraction step. The references section contains
the list of 50 papers in the systematic mapping.

D. Keywording and Classification

As suggested by Petersen et al. [15], the abstracts of the
chosen papers were read in order to find keywords about
the contributions, topic and the context of the paper. Both
title and abstract served the purpose of finding keywords to
get a high level understanding of the topic. The papers were
initially classified by type of paper (e.g. technique, method,
experience report, empirical study, application, tool), topic
of the paper (by analyzing the keywords of the paper) and
problem domain (the problem the paper tries to address). Using
the topic of the paper and the problem domain, it was found
that information visualization helped software developers in
four different categories: design, development, communication,
and progress tracking.

IV. FINDINGS

This section provides information about the findings of the
systematic mapping based on the categories (design, develop-
ment, communication and progress tracking) identified during
the keywording and classifications steps. Table II summarizes
the findings based on the categories.

A. Design

In terms of common design visualizations used by Agile
teams, the most prolific techniques are low fidelity sketches
(informal drawings that don’t follow a convention) and in-
put diagrams (formal drawings that follow a convention)
[30, 65]. Developers make use of sketches and input diagrams
to understand design decisions, to design interfaces, and to
communicate information to others [30, 65]. Understanding
is important when developers try to make sense of a code
snippet. It can be beneficial when training a new developer
or when a developer needs to work with a colleague’s code
[30]. Rough sketches (see Figure 1) are used in that situation
to frame and try to understand a problem or some obscure
architecture. Since sketches are also used to develop the
UI and to brainstorm about the right architecture for the
project, developers often collaborate to develop those sketches,
and they save these visualizations (i.e by taking pictures or
photocopies and uploading them to a wiki or saving into a
hard drive) because it serves as documentation [30, 65].

Sketches and diagrams have a life cycle that goes well
beyond their creation [30, 65]. By understanding the purpose
of these visualizations one can comprehend the importance of
conserving and sharing these artifacts. It is clear that these
visualizations are primary sources for UI design and that they
also serve as a supportive role in the design and development
cycle. Another important aspect of these visualizations is that
developers would choose different degrees of formalities to
visualize the data depending on the context.

According to Cherubiny et al. [30] and Walny et al. [65]
formal diagrams, such as UML diagrams, are only used in
more formal settings, to explain and share information with

Fig. 1: An Informal Technology Diagram [2].

customers and other departments who might be concerned
with the project. Petre [52] conducted an empirical study,
which involved 50 software developers, and found that 70% of
developers don’t use UML diagrams, and if they do use UML
diagrams it is usually in the very early stages when exploration
of problems and design decisions are being discussed.

Informal visualizations are often used to explore and review
the code, explain architectures, and refactoring. Although most
developers don’t use formal diagrams when drawing, they
come out with their own comprehensive visualizations to
understand their data [30, 65]. In this manner, these rough
sketches are in a way more relevant than other formal forms.
The major problem is that sketches and diagrams loose much
of their context once you take them out of a meeting or
conversation [52, 65].

Major problems identified with Agile development and
design practices are usability issues [41, 59]. Agile teams focus
on delivering working software [6]; however, this might not be
of the best quality in terms of usability if teams don’t integrate
usability practices into the project [37, 59]. To overcome this
issue, several approaches have been proposed. Most solutions
try to minimize the cost and time involved in creating and
evaluating medium and high fidelity prototypes for usability
testing by incorporating usability from the very beginning
of the project. The key idea is to start designing the user
interface in a really short sprint before development starts
and involve developers in design practices together with the
user experience team [64]. In this manner, the user experience
team can get quick feedback from customers, developers and
stakeholders, and it really allows the development team to be
clear on what’s important to the customer.

Ferreira et al. [35] interviewed Agile teams who used user-
centered design (UCD) practices with Agile methodologies
and found that Agile facilitates usability testing on working
software, and makes possible to catch and fix usability issues
in later iterations. In another study, Ferreira et al. [36] identify
that mutual awareness of responsibilities, deadlines, and how
work is done affects other parts of the software which is key
to integrate usability practices.



Visualizations are used to determine problems in the UI
[41]. ActiveStory [41] includes the development of low fidelity
prototypes with UI testing practices. This tool allows conduct-
ing remote usability testing based on low-fidelity prototypes
by gathering information about the time spent on a page,
the clicks, and the feedback returned by the end users. This
remote testing makes usability more achievable because it is
less obtrusive to the Agile development team. Feedback from
usability tests is presented to developers as visualizations that
summarize the data collected [41].

To understand customer needs, a common practice is to cre-
ate visualizations of personas [46]. Personas are descriptions of
fictional characters who are created to represent different types
of users [13]. The purpose of creating personas is to highlight
relevant information such as attitudes, context, and main goals
of the persona, to focus developers on what is important to
the customer when making design decisions [13]. Moss [46]
argues that displaying personas pictures, names, and relevant
information as a big visible chart helps the team make design
decisions and prioritize usability issues when they arise.

The development cycle of an Agile team starts with design,
which is often referred as iteration 0 [64]. This is a time
when Agile teams are concerned with the system environment,
software architecture, user interface, and everything that is
relevant to efficiently start with development on subsequent
iterations. Ungar [64] suggests that designing software is a
collaborative activity; however, current research is not clear
on what kind of environment (in terms of tool support and
setting) is used by Agile teams.

For this reason, some researchers argued that software
development, in general, would benefit from embracing a
design studio environment where communication and feedback
can be fostered [38, 50, 64]. A design studio would allow
developers to be more engaged in usability practices.

Geyer and Reiterer [38] explore multi-surface environments
(MSE), which incorporate a variety of devices such as large
displays, tablets and laptops into a single interactive space, to
allow teams to share, criticize, save, and iterate over different
designs. MSE are typically used for collaboration, so in design
practices it helps UI designers to communicate and share
information to ultimately get a user interface that will satisfy
the customer. Nonetheless, expected changes in requirements
would also mean changes in the UI requirements, so it is not
clear how Agile teams would integrate those practices over
subsequent iterations.

B. Development

Most visualizations used during development are created
to increase awareness, help teams coordinate their activities,
and make feedback immediate and clear so that developers
can react accordingly to changes. Visualizing aspects of the
software that can be improved is also beneficial during de-
velopment and for the benefit of the customer. This includes
being able to visualize problems in the source code, as well
as visualizing areas that can be improved by refactoring.

A development practice in Agile teams is continuous
integration (CI). Since Agile teams work in small sprints, it
is necessary for them to have working software everyday, and

Fig. 2: Traffic light visualization for CI [4].

CI helps to make this possible. Automated tests are setup to
make sure integration is less problematic. Agile developers
commit their code usually at least daily to make sure they have
the latest version. Integration can be difficult and sometimes
a commit could break a build. CI tools generally notify
developers when something goes wrong with either the build
or the tests, but feedback is not readily available and this can
be an issue for software developers [27].

Physical artifacts serve the purpose of giving quick feed-
back to developers on integration (see Figure 2). Lava lamps
and traffic lights [27, 42, 57] are often used to notify the
developers of the status of the build. Both solutions use colours
to represent the status. For instance, in the case of traffic lights,
red is used to indicate an error, amber notifies that some tests
didn’t pass, and a green light means everything is fine. These
physical artifacts are a way to get automated feedback about
the project when integration occurs; however, teams need to
make sure that they don’t get feedback that would create a bad
environment in the office (i.e name the person who broke the
build) [42].

Although, physical artifacts have proved to be reliable and
efficient in quickly delivering the status of the software, some
researchers found that CI tools gather relevant information
that is often hidden to interested parties like developers or
even managers [27]. SQA-Mashup is used as a dashboard to
visualize all the relevant information collected by different
CI tools. Treemaps, timelines, and pie charts are used to
see information about the test coverage, classes that haven’t
been well tested, number of commits, and the date bugs were
introduced and fixed. The benefit of this dashboard is that
managers and developers can access a summarized version of
the project’s data without having to go through log files to
gather and understand the information [27].

Some benefits of code coverage visualization tools include
improvement of code robustness, ability to see the status of
automated test cases, and detection of errors [21]. Lawrance
et al. [43] conducted an empirical study with 30 professional
software developers to analyze the effect that visualization
tools for code coverage had on developers. They found that test
coverage visualizations harmed testing practices because they
didn’t show the big picture of the tests and this gave developers



the idea that the code was throughly tested. A positive aspect
of visualizations for test coverage is that it provided developers
with a standard acceptable number of tests for other classes in
the project.

Other aspects like code comprehension, readability, and
stability are major sources of concern for developers, es-
pecially when changing requirements sometimes leaves the
team with an architecture or model that is less than ideal for
the current situation. Different techniques have been used to
identify code snippets that need special attention from testers,
developers or quality assurance people. Heatmaps are used
together with the code to identify classes that have been
modified recently [60]. This allows developers to increase
the coordination of their activities or even detect unstable
code snippets throughout the development cycle. Companies
such as Ericsson AB and Saab AB were used to test how
their Agile projects could benefit from being able to visualize
unstable code and it was found that the tool helps identifying
risky components that can compromise software quality [60].
Although not necessarily targeted for Agile teams, it was found
that researchers have made use of visualizations to easily detect
code smells, code dependencies, and problems in the structure
of the code [31]. It is possible to see when there are parts of
the code that are very risky and error prone [31]. This kind of
visualization allows developers to understand why a particular
module has been changed over a period of time.

Other visualizations explored are more concerned with
showing developers the context on which they are working or
the evolution of contributions made by developers by analyzing
project repositories [29, 47]. ProxiScientia [25] outlines the
need for communication between developers and helps devel-
opers determine coordination needs as they arise. ProxiScientia
[25] was developed to raise awareness of coordination needs in
real time and has been evaluated in Agile projects. The value
of these techniques is that they identify needs for coordination
and prompt developers to talk to each other to avoid issues
when changing a feature.

Information visualization techniques are also used to facil-
itate the coding practice of Agile teams. Most Agile teams see
software development as a group activity (e.g pair program-
ming in XP). Pair programming allows developers to comment
about code and discuss design decisions, but they often have to
assume certain roles when they are pair programming because
typically they only have access to one input-keyboard and
mouse. Hardy et al. claim that the primary tool of the developer
an IDE does not support the notion of pair programming very
well [40]. Therefore, they created a tool to support collabora-
tive development using a multi-surface environment. This tool
allows developers to interact with their laptops in a common
workspace (an interactive coffee table), which serves as an
entry point for conversations to clarify ideas. This tool uses
visualization techniques to display the relevant information
about the project: architecture diagrams, code snippets, input
diagrams, among others. Parnin [49] also proposes the use
of interactive displays as peripheral devices to expand the
workspace of developers enabling them to be more productive
by allowing developers to focus on artifacts when performing
demanding tasks such as refactoring.

SourceVis [18] uses a multi-touch table to support collab-
orative activities like code review for maintenance. SourceVis

supports visualizations to explore the structure and evolution
of software, and has subsequently had an empirical evaluation
conducted with professional developers. CodeCity [67] was
also developed to evaluate the composition and evolution of
software. This 3D visualization tool has been validated by
empirical studies, which determined that CodeCity increased
correctness and completion times over other exploration tools
such as Eclipse and Excel spreadsheets. Boccuzzo and Gall
[24] make use of multi touch devices as discussion platforms
to support collaborative activities such as code reviews and
software exploration.

C. Communication

Communication is often fostered directly and indirectly.
Direct communication encompasses all the techniques used
during group meetings in the Agile development cycle. Indirect
communication is the shared knowledge that is transferred and
shared amongst the team through big visible charts. Manzoor
and Shahzad [12] found that there is a large number of visual-
ization techniques used by teams to improve communication.

Cockburn [6] introduced the term of information radiators
to describe graphical charts that teams can use to learn
about a project at a glance. The use of big visible charts or
information radiators is common and effective in Agile teams
for knowledge sharing [42, 57].

Agile teams use their workspace to communicate infor-
mation (i.e deadlines, work in progress, and goals) about the
project. In Agile, workspaces have a huge impact on the
outcome of the project [32, 33]. Visualizations are used to
maintain the team focused on what’s really important for
the customer and the team [33, 56, 57]. Visualizations are
aids to preserve the big picture of the project when teams
are immersed in development activities (see Figure 3). The
right visualizations can be of true benefit to Agile developers
because they are able to see the most important information
with minimum effort [32, 33, 42, 56, 57].

Most software development teams make use of their cre-
ativity to display information that is valuable to the team
through the use of information radiators. These charts are
highly dependent on the particular team and the project that
they are working on [39, 56]. A benefit of using information
radiators in the workspace is that the team needs to put little
effort in creating and understanding these visualizations.

Although, there isn’t a standard way to build a particular
information radiator, some studies have looked on a set of
heuristics to create a valuable visualization of the project
in the workspace. The key aspects of information radiators
are that they must be visible, valuable to developers or the
customers, easy to update, easy to comprehend, and they must
display information that is current and specific to an issue
to avoid ‘visual pollution’ [32, 33]. These visualizations are
valuable because they encourage communication, coordination
and collaboration between team members [56].

FASTDash [23] and Awareness 2.0 [63] are digital visu-
alization tools that help increase awareness of the status of
a project and the development process. Dashboards organize
and present relevant information for the developer in an easy
to read manner. Dashboards are used in Agile to communicate



Fig. 3: Walle-D: An ambient display for Agile developers [14].

information about the project. The benefit of using visualiza-
tion techniques on dashboards is that they improve the sense
of awareness and it prompts developers to act on the conflicts
that arise. Awareness 2.0 provides a high level overview using
visualizations to detect bottlenecks, deadlines and tasks, which
is similar to the information provided by Agile walls. On
the other hand, FASTDash is more local in the sense that it
allows developers to understand the context on which they are
working. FASTDash makes the team more efficient because
it encourages communication between team members who are
working on similar areas in the project.

To easily share information in the workspace environment,
tools like Impromptu [22] have been proposed to make use of
ambient displays to show team members contributions relevant
to the project such as design ideas, bugs, and information to be
reviewed by the group. Impromptu allows developers to add,
modify, and remove information that is shared on an ambient
display so they can keep up to date with the latest information
about the project.

Agile teams have different meetings at different points dur-
ing the sprint to plan, discuss, and maybe improve the current
practices. AgilePlanner [66] and MasePlanner [45] facilitate
collaborative iteration planning by making use of interactive
surfaces. Users can create, remove, and manipulate story cards
using touch gestures on a display. The purpose of these
tools is to simulate a collocated environment by providing a
common workspace where people can discuss and brainstorm.
AgilePlanner extends MasePlanner by allowing the integra-
tion of distributed teams in the iteration discussion. Hence,
information visualization techniques are used here to improve
some of the communication challenges faced by distributed
teams. CodeSpace [26] uses a multi surface environment to
facilitate collaboration on Scrum, retrospective and miscella-
neous meetings for small, collocated teams. CodeSpace allows
developers, managers, and stakeholders to transfer important
information (on personal devices) to other devices, like large
displays, where everyone can see the relevant information.

D. Progress Tracking

Accurate progress tracking allows managers and developers
to determine if they are on or off track during an iteration of
a project. To keep track of progress Agile teams commonly
use Agile walls (see Figure 4) and burn down or burn up
charts. A burn up chart shows the functionality implemented
over a period time [28]. Burn down charts shows the work
remaining to reach a specific goal over a period of time [28].
Burn down charts are considered the most valuable information
radiators [51] found in Agile workspaces. Several experience
reports claim that these visualizations are highly valuable for
the team and are the ‘must have’ visualizations to understand
the progress of the project and detect chances of improving
the current situation [39, 57, 58].

Hajratwala found that most inefficient Agile teams are
ineffective because they can’t visualize the actual work ac-
complished [39]. Proper use of visualizations often increases
the team’s awareness and their overall performance [39]. The
visualizations of the work accomplished are often seen in
Agile walls or taskboards. Although, there isn’t a particular
way to build taskboards, current research suggests that at a
minimum teams should be able to visualize the following
categories: work in progress, backlog of user stories, and work
completed [39]. These categories are represented as columns
in the taskboard. Teams need to define what ‘done’ means for
the team to avoid problems [58]. Hence, several columns can
be added to visualize the different steps of a task during a
sprint (e.g. testing, quality assurance, completed).

The type of taskboard used in Agile highly depends on the
scope of the project and the Agile methodology used by the
team. Agile teams can use scrum taskboards [6] or Kanban
boards which are restricted boards where teams can see the
workflow and they can limit the work in progress [53]. Other
studies have shown that there’s value on splitting the tasks
between different components: UI, data layer, business layer,
and quality among others [55]. These components are shown
as part of the task-boards; the vertically sliced taskboard helps
developers visualize the components missing to finish tasks
that can be shown to the customer and that thus have business
value for them. To visualize the big picture of the project, there
are other visualizations techniques like the product release train
visualization that helps visualize user stories completed for
each iteration in a release, and the bugs fixed in a particular
iteration [53].

Distributed Agile teams use electronic commercial solu-
tions, such as KanbanFlow3 and Trello4, to keep people posted
on the work done. At a minimum, these tools allow developers
to create tasks, assign tasks, and change the status of tasks to
keep track of progress. Some studies [39, 51, 57] discuss that
electronic tools to keep track of the team progress may be
ineffective because they are not as flexible and engaging as
physical Agile walls. Sharp et al. [57] explain that electronic
tools can only be equally effective as physical artifacts if there
is a way to provide a social context around these digital tools.

Other visualizations for progress tracking are concerned
with the velocity of the team and estimating efforts. Sharp et al.

3https://kanbanflow.com/
4https://trello.com/



Fig. 4: Physical taskboard [39].

discuss different visualizations used to show the performance
of the team for a period of time [57]. This helps developers
and managers to see the progress of the team, and it helps
to estimate for the future. Agile teams use burn-up or burn-
down charts to graphically represent the work achieved and
the work left at a certain time in an iteration [28, 53]. These
charts show the ideal and actual work done over a period of
time, and indicate the performance of a team.

To plan for a sprint and schedule the work properly, Agile
teams need to estimate task completion time. Estimating the
time to complete a task is challenging, but it is a relevant
activity because this determines the user stories that will be
targeted in an iteration or release. Raith et al. [54] propose a
prototype to estimate task completion in Agile projects that
uses the ‘Planning Poker’ technique. This prototype uses a
multi surface environment to allow collaboration to estimate
tasks time. Developers can set a time estimate using cards, and
a moderator can control the discussion.

V. DISCUSSION

The results of this systematic mapping suggest that visu-
alization techniques are valuable in Agile software develop-
ment because they lead to understanding, collaboration, and
self-organization. Visualization techniques help Agile teams
to increase knowledge sharing when designing, developing,
communicating, and tracking progress.

A. Design

Sketches and diagrams encourage discussion and brain-
storming of ideas between software developers [65]. These
visualizations are used as discussion tools to explain and un-
derstand artifacts like the architecture, design choices, and the
code. Teams use different fidelities for drawings (low, medium,
high and computer generated) to represent software artifacts
such as architecture and use cases. It was found that most
valuable drawings are low fidelity because they are disposable
and easily generated. Agile teams include whiteboards in their
workspace [6] to make sure developers can share knowledge
with other team members through sketches and diagrams.
Sketches are widely used when designing an interface because

they allow teams to catch errors in design or usability issues
with little effort. In this manner, sketches are important to
share knowledge about the end users. Although there’s real
value for developers who use informal sketches, it doesn’t
seem like formal diagrams that are high fidelity or follow a
rigid convention, such as UML diagrams, provide any value
that surpasses the effort made to create them [52]. Booch [3]
proposes without any empirical evidence the reason for which
most developers don’t draw diagrams is because the diagrams
are usually not useful to advance the work of developers.

B. Development

Teams are interested in knowing the code that changed the
state of a program, the behaviour of software, and understand-
ing the implications of the code structure [9]; however, this
information is difficult to find. For this reason, visualization
techniques have been used to find and present information
about software artifacts to team members. Software visualiza-
tion tools allow developers to locate areas where the code can
improve, places to refactor, and areas that have not been well
tested. Software visualization can raise awareness of poten-
tially problematic areas and allow developers to discover and
explore refactoring opportunities. Tools making use of multi-
touch devices have also been proposed to enable collaboration
and encourage discussion between team members and thus
increase knowledge sharing. Agile teams can benefit from
adopting software visualization techniques to acquire their
information needs during development. In practice the only
visualizations we found that are frequently used for develop-
ment are physical devices that provide automated feedback
when using CI. Other solutions like SQA-Mashup [27] seem
to be more comprehensive in the information they can collect.

C. Communication

The most effective visualizations for communication in
Agile teams highly depends on the project, the environment
setup, and the team itself. The results suggest that most teams
need to adapt their taskboards and other common information
radiators, so that the team can make sense of the information
that is being conveyed. What works for one team, may not
work for other teams. This implies that teams need to know
how to easily adapt information radiators to their information
needs.

Knowledge sharing is not the only benefit of information
visualization in Agile workspaces. Information radiators are
built around a social context, and they engage team members
to see, update, and discuss the visualizations. Ko et al. [9]
imply that collocated workers are also information sources.
Hence, there is true value that co-located teams can enjoy
when using the workspace to display information, but this
has implications for distributed Agile teams. The findings of
the systematic mapping show that digital versions of common
artifacts (i.e taskboards) are not as effective because they are
not permanently available, and they are easy to ignore and
more difficult to consult [42, 57].

Dashboards are highly valuable for distributed teams be-
cause they allow all interested parties to know the big picture
of the project even though the whole team is not in the
same place. They are helpful to indicate when needs for



TABLE II: Summary of findings from the systematic mapping. Presented by Category, Purpose, Reference of Paper, Domain of
Paper, Type of Study, where Participants came from, and number of Participants in the study. Legend: Empirical Study (Emp),
Ethnographic study (Eth), Experience Report (Exp), Grounded Theory (Gt), Interviews (I), Literature Review (Lit), None (N),
Observational study (Ob), Software Engineering (SE), Students (St), Survey (S), Unknown (Unk), User study (US).

Category Purpose Paper Domain Type of study Participants # Participants

Design Understanding overall system

30 SE I & S SE 69
34 SE N N N
35 SE Gt SE Unk
36 SE Eth SE 4 Teams
37 SE Gt SE 10
38 HCI N N N
41 SE N N N
46 SE Exp N N
50 SE Exp N N
52 SE Emp SE 50
59 SE Lit N N
64 SE Exp N N
65 Vis I & S St 8

Development Overviews

18 Vis US St 6
19 SE Emp Project 16
20 SE Case Study Project 3
21 SE Exp N N
24 SE Tool SE 2
25 SE US SE 6
27 SE US SE 16
29 SE N N N
31 SE US SE 5
40 SE US SE 6
43 SE Emp SE 30
44 SE Case Study SE 5 Projects
47 SE N N N
49 Vis N N N
60 SE Ob SE 3 Companies
62 SE Lit N N
67 SE US SE 41

Communication Awareness and status

22 SE Field Study SE 13
23 HCI Ob SE 6
26 SE US SE 9
32 SE I & S SE 8 Teams
33 SE Ob SE 8 Teams
42 SE Exp N N
45 SE Tool N N
48 SE Case Study SE 3 Projects
56 SE Ob SE 3 Teams
57 SE Ob SE 6 Teams
61 SE S Tools 12
63 SE Emp SE 150
66 SE US SE 9

Progress Tracking Keep track of progress

28 SE Theory N N
39 SE Exp N N
51 SE Exp N N
53 SE Exp N N
54 SE Tool St 21
55 SE Exp N N
58 SE Ob SE 23



coordination and collaboration arise. Any kind of information
can be displayed in a dashboard; however, the most common
ones are digital taskboards, progress tracking information, and
individual developers’ workload and progress.

D. Progress Tracking

Progress tracking is essential for Agile teams. The most fre-
quently used techniques to visualize work in Agile projects are
taskboards and progress tracking charts (i.e. burn down chart
or burn up chart) [39, 57, 58]. This is in line with Ko’s et al.
[9] findings that show developers are interested in maintaining
awareness of the work done by their coworkers, dependencies
amongst tasks and the information that is relevant to the tasks.
Taskboards help teams to meet tight deadlines and deliver high
priority user stories. It was found that there are many different
variations of taskboards to keep track of projects [39]. As with
any information radiator, teams need to adapt the taskboards
to their needs so that is easy for team members to keep track
of the big picture within an iteration.

E. Implications

The literature suggests there is a wide variety of novel
software visualization tools to support practices such as code
reviews, code exploration, and software maintenance. Most of
these tools have been tested with small groups of developers
(see Table II). Researchers have received good feedback be-
cause the tools raise awareness of artifacts required to advance
software development. What is not clear is how these tools are
better than what developers are currently using. This could
be the reason for which adoption of software visualization
tools is very low in industry [10]. Without clear supporting
evidence that visualization tools can help improve development
practices, developers won’t make an effort to adopt these tools
especially if it means they have to learn a new tool, learn how
to interact with new devices, obtain expensive hardware, and
maybe even change their working practices.

An alternative approach would be to design visualization
tools to support software development tasks based on the
needs of real software practitioners and teams. Conducting
observational studies of real software practitioners to obtain
requirements for visualizations tools would be an initial step
to gain insight into how they currently use development tools
and what information visualization techniques they use if any.

F. Limitations

A systematic mapping methodology was used to explore
information visualization techniques in Agile software devel-
opment. We did an exhaustive search that identified 162 papers
which then yielded 50 papers as part of the data extraction
step. Limitations of this study include possible bias during
the keywording and classification steps. A common limitation
due to the nature of these types of systematic mapping studies
is that there is no guarantee that all papers were found by
the search queries. These papers were predominantly academic
research papers which meant we might have missed commer-
cial visualization tools used by Agile practitioners. We did not
perform any interviews or surveys with Agile practitioners as
we see those steps as out of scope for this paper.

VI. CONCLUSION

Sharing information about artifacts is a challenging task
amongst team members in Agile projects. Many information
visualization techniques have been used to overcome the
challenges that software development teams face when trying
to share knowledge. A systematic mapping of the research
literature was conducted to explore and summarize the use of
information visualization techniques for designing, developing,
communicating, and tracking progress. The main contribution
of this paper is the systematic mapping that provides a variety
of visualization techniques that help to increase knowledge
sharing and awareness about artifacts. Based on the literature
we found sketches and informal diagrams, CI feedback visu-
alizations and test coverage tools, and information radiators
and agile walls are the most frequently used visualization
techniques in Agile software development.

In the future we would like to conduct surveys and in-
terviews with Agile developers to identify the visualization
techniques and tools that are commonly used in industry.
Surveys and interviews with Agile practitioners would allow
us to compare the use of visualization techniques and tools
with the results of this systematic mapping.

REFERENCES

[1] O. Ahmad, J. Markkula, and M. Ovio. Kanban in software development:
A systematic literature review. In Proc. of SEAA. IEEE, 2013.

[2] S. Ambler. Architecture envisioning: An Agile best practice.
http://agilemodeling.com/essays/initialArchitectureModeling.htm.

[3] G. Booch. Why don’t developers draw diagrams? In Proc of. SoftVis,
pages 3–4. ACM, 2010.

[4] R. Bradders. Cruisecontrol.net traffic lights.
http://www.bradders.org/trafficlights/.

[5] S. Card, J. Mackinlay, and B. Shneiderman. Readings in Information
Visualization: Using Vision to Think. Morgan Kaufmann Publishers
Inc., 1999.

[6] A. Cockburn. Agile Software Development. Addison-Wesley, 2002.
[7] S. Diehl. Software Visualization: Visualizing the Structure, Behaviour,

and Evolution of Software. Springer Berlin Heidelberg, 2007.
[8] M. Jiménez, M. Piattini, and A. Vizcaı́no. Challenges and improvements

in distributed software development: A systematic review. Adv. Soft.
Eng., 2009.

[9] A. Ko, R. DeLine, and G. Venolia. Information needs in collocated
software development teams. In Proc. of ICSE. IEEE, 2007.

[10] R. Koschke. Software visualization in software maintenance, reverse
engineering, and re-engineering: A research survey. Journal of Software
Maintenance, 15(2):87–109, March 2003.

[11] R. Lima, A. Torres, T. Souto Mendes, M. Mendona, and N. Zazworka.
Software evolution visualization: A systematic mapping study. Infor-
mation and Software Technology, 55(11):1860–1883, 2013.

[12] N. Manzoor and U. Shahzad. Information visualization for Agile
development in large-scale organizations. Master’s thesis, School of
Computing, Blekinge Institute of Technology, September 2012.

[13] L. Nielsen. Personas. The Interaction Design Foundation, 2013.
[14] K. Olofsen. The ultimate wallboard.

http://blogs.atlassian.com/2010/12/ultimate wallboard winner/.
[15] K. Petersen, R. Feldt, S. Mujtaba, and M Mattsson. Systematic mapping

studies in software engineering. In Proc. of EASE, pages 68–77. British
Computer Society, 2008.

[16] J. Shore. The Art of Agile Development. O’Reilly Media, Inc., 2007.
[17] C. Ware. Information Visualization: Perception for Design (3rd Edition).

Morgan Kaufmann, Burlington, MA, USA, 2012.



SYSTEMATIC MAPPING PAPERS

[18] C. Anslow, S. Marshall, J. Noble, and R. Biddle. SourceVis: collabo-
rative software visualization for co-located environments. In Proc. of
VISSOFT, pages 1–10. IEEE, 2013.

[19] F. Beck. Analysis of multi-dimensional code couplings. In Proc. of
ICSM, pages 560–565, 2013.

[20] M. Beck, J. Trumper, and J. Dollner. A visual analysis and design tool
for planning software reengineerings. In Proc. of VISSOFT, pages 1–8.
IEEE, 2011.

[21] S. Berner, R. Weber, and R. Keller. Enhancing software testing by
judicious use of code coverage information. In Proc. of ICSE, pages
612–620. IEEE, 2007.

[22] J. Biehl, W. Baker, B. Bailey, D. Tan, K. Inkpen, and M. Czerwinski.
Impromptu: a new interaction framework for supporting collaboration
in multiple display environments and its field evaluation for co-located
software development. In Proc of. CHI, pages 939–948. ACM, 2008.

[23] J. Biehl, M. Czerwinski, G. Smith, and G. Robertson. Fastdash: A
visual dashboard for fostering awareness in software teams. In Proc.
of CHI, pages 1313–1322. ACM, 2007.

[24] S. Boccuzzo and H. Gall. Multi-touch collaboration for software explo-
ration. In Proc of. International Conference on Program Comprehension
(ICPC). IEEE, 2010.

[25] A. Borici, K. Blincoe, A. Schrter, G. Valetto, and D. Damian. Proxisci-
entia: Toward real-time visualization of task and developer dependencies
in collaborating software development teams. In Proc. of CHASE, pages
5–11. IEEE, 2012.

[26] A. Bragdon, Rob DeLine, K. Hinckley, and M. Ringel Morris. Code
space: Touch + air gesture hybrid interactions for supporting developer
meetings. In Proc. of ITS, pages 212–221. ACM, 2011.

[27] M. Brandtner, E. Giger, and H. Gall. Supporting continuous integration
by mashing-up software quality information. In Proc. of CSMR-WCRE,
pages 109–118. IEEE, 2014.

[28] A. Cabri and M. Griffiths. Earned value and agile reporting. In Proc.
of AGILE, pages 6 pp.–22. IEEE, 2006.

[29] A. Caudwell. Gource: Visualizing software version control history. In
Proc. of SPLASH, pages 73–74. ACM, 2010.

[30] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko. Let’s go to the
whiteboard: How and why software developers use drawings. In Proc.
of CHI, pages 557–566. ACM, 2007.

[31] G. de Figueiredo Carneiro, M. Silva, L. Mara, E. Figueiredo,
C. Sant’Anna, A. Garcia, and M. Mendona. Identifying code smells
with multiple concern views. In Proc. of SBES. IEEE, 2010.

[32] R. de Melo Oliveira and A. Goldman. How to build an informative
workspace? an experience using data collection and feedback. In Proc.
of AGILE, pages 143–146. IEEE, 2011.

[33] R. de Melo Oliveira, A. Goldman, and C. Melo. Designing and
managing Agile informative workspaces: Discovering and exploring
patterns. In Proc. of HICSS, pages 4790–4799. IEEE, 2013.

[34] Chuan Duan and J. Cleland-Huang. Visualization and analysis in
automated trace retrieval. In Proc. of REV, 2006.

[35] J. Ferreira, J. Noble, and R. Biddle. Agile development iterations and
UI design. In Proc of. AGILE, pages 50–58, 2007.

[36] J. Ferreira, H. Sharp, and H. Robinson. Agile development and user
experience design integration as an ongoing achievement in practice.
In Proc. of AGILE, pages 11–20, 2012.

[37] D. Fox, J. Sillito, and F. Maurer. Agile methods and user-centered
design: How these two methodologies are being successfully integrated
in industry. In Proc. of Agile, pages 63–72. IEEE, 2008.

[38] F. Geyer and H. Reiterer. A cross-device spatial workspace supporting
artifact-mediated collaboration in interaction design. In Extended
Abstracts on CHI, pages 3787–3792. ACM, 2010.

[39] N. Hajratwala. Task board evolution. In Proc. of AGILE. IEEE, 2012.
[40] J. Hardy, C. Bull, G. Kotonya, and J. Whittle. Digitally annexing desk

space for software development: Nier track. In Proc. of ICSE, 2011.
[41] A. Hosseini-Khayat, T. Hellmann, and F. Maurer. Distributed and

automated usability testing of low-fidelity prototypes. In Proc. of
AGILE, pages 59–66. IEEE, 2010.

[42] J. Hunt, T. Hume, and D. Lozdan. On rabbits, space and cards: Moving
towards an informative workspace. Proc. of AGILE, 0, 2007.

[43] J. Lawrance, S. Clarke, M. Burnett, and G. Rothermel. How well
do professional developers test with code coverage visualizations? an
empirical study. In Proc. of VLHCC, pages 53–60. IEEE, 2005.

[44] Mircea Lungu, Michele Lanza, Tudor Grba, and Romain Robbes. The
small project observatory: Visualizing software ecosystems. Science of
Computer Programming, 2010.

[45] R. Morgan and F. Maurer. Maseplanner: A card-based distributed
planning tool for Agile teams. In Proc. of ICGSE. IEEE, 2006.

[46] C. Moss. Big visible testing. In Proc. of AGILE. IEEE, 2013.
[47] M. Ogawa and Kwan-Liu Ma. codeswarm: A design study in organic

software visualization. Visualization and Computer Graphics, IEEE
Transactions on, 15(6):1097–1104, Nov 2009.

[48] Ciaran O’Reilly, David Bustard, and Philip Morrow. The war room
command console: Shared visualizations for inclusive team coordina-
tion. In Proc. of SoftVis, pages 57–65. ACM, 2005.

[49] C. Parnin, C. Görg, and S. Rugaber. Codepad: Interactive spaces for
maintaining concentration in programming environments. In Proc. of
SoftVis, pages 15–24. ACM, 2010.

[50] J. Patton. Hitting the target: Adding interaction design to Agile software
development. In OOPSLA Practitioners Reports. ACM, 2002.

[51] T. Perry. Drifting toward invisibility: The transition to the electronic
task board. In Proc. of AGILE, pages 496–500. IEEE, 2008.

[52] M. Petre. UML in practice. In Proc. of ICSE, pages 722–731. IEEE,
2013.

[53] R. Polk. Agile and Kanban in coordination. In Proc. of AGILE, pages
263–268. IEEE, 2011.

[54] F. Raith, I. Richter, R. Lindermeier, and G. Klinker. Identification of
inaccurate effort estimates in Agile software development. In Proc. of
APSEC, pages 67–72. IEEE, 2013.

[55] I. Ratner and J. Harvey. Vertical slicing: Smaller is better. In Proc. of
AGILE, pages 240–245. IEEE, 2011.

[56] H. Sharp and H. Robinson. Collaboration and co-ordination in mature
extreme programming teams. Int. J. Hum.-Comput. Stud., 66(7), 2008.

[57] H. Sharp, H. Robinson, and M. Petre. The role of physical artefacts in
Agile software development: Two complementary perspectives. Inter-
acting with Computers, 21(1-2), 2009.

[58] H. Sharp, H. Robinson, J. Segal, and D. Furniss. The role of story cards
and the wall in XP teams: A distributed cognition perspective. In Proc.
of AGILE, pages 65–75. IEEE, 2006.

[59] O. Sohaib and K. Khan. Integrating usability engineering and Agile
software development: A literature review. In Proc. of Computer Design
and Applications (ICCDA), pages V2–32–V2–38. IEEE, 2010.

[60] M. Staron, J. Hansson, R. Feldt, A. Henriksson, W. Meding, S. Nilsson,
and C. Hglund. Measuring and visualizing code stability – a case study
at three companies. In Proc. of IWSM-MENSURA. IEEE, 2013.

[61] M. Storey, D. Čubranić, and D. German. On the use of visualization
to support awareness of human activities in software development: A
survey and a framework. In Proc. of SoftVis, pages 193–202. ACM,
2005.

[62] A.R. Teyseyre and M.R. Campo. An overview of 3D software
visualization. Visualization and Computer Graphics, IEEE Transactions
on, pages 87–105, 2009.

[63] C. Treude and M. Storey. Awareness 2.0: Staying aware of projects,
developers and tasks using dashboards and feeds. In Proc. of ICSE,
pages 365–374. ACM, 2010.

[64] J. Ungar. The design studio: Interface design for agile teams. In Proc.
of AGILE, pages 519–524. IEEE, 2008.

[65] J. Walny, J. Haber, M. Dörk, J. Sillito, and S. Carpendale. Follow that
sketch: Lifecycles of diagrams and sketches in software development.
In Proc. of VISSOFT, pages 1–8. IEEE, 2011.

[66] X. Wang and F. Maurer. Tabletop agileplanner: A tabletop-based project
planning tool for Agile software development teams. In Proc. of
Tabletop, pages 121–128. IEEE, 2008.

[67] R. Wettel, M. Lanza, and R. Robbes. Software systems as cities: A
controlled experiment. In Proc. of ICSE, pages 551–560. ACM, 2011.


